Pulsatility of Lenticulostriate Arteries Assessed by 7 Tesla Flow MRI—Measurement, Reproducibility, and Applicability to Aging Effect
نویسندگان
چکیده
Characterization of flow properties in cerebral arteries with 1.5 and 3 Tesla MRI is usually limited to large cerebral arteries and difficult to evaluate in the small perforating arteries due to insufficient spatial resolution. In this study, we assessed the feasibility to measure blood flow waveforms in the small lenticulostriate arteries with 7 Tesla velocity-sensitive MRI. The middle cerebral artery was included as reference. Imaging was performed in five young and five old healthy volunteers. Flow was calculated by integrating time-varying velocity values over the vascular cross-section. MRI acquisitions were performed twice in each subject to determine reproducibility. From the flow waveforms, the pulsatility index and damping factor were deduced. Reproducibility values, in terms of the intraclass correlation coefficients, were found to be good to excellent. Measured pulsatility index of the lenticulostriate arteries significantly increased and damping factor significantly decreased with age. In conclusion, we demonstrate that blood flow through the lenticostriate arteries can be precisely measured using 7 Tesla MRI and reveal effects of arterial stiffness due to aging. These findings hold promise to provide relevant insights into the pathologies involving perforating cerebral arteries.
منابع مشابه
Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7‐T quantitative flow MRI
Thus far, blood flow velocity measurements with MRI have only been feasible in large cerebral blood vessels. High-field-strength MRI may now permit velocity measurements in much smaller arteries. The aim of this proof of principle study was to measure the blood flow velocity and pulsatility of cerebral perforating arteries with 7-T MRI. A two-dimensional (2D), single-slice quantitative flow (Qf...
متن کاملFabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...
متن کاملUsing High-Field Magnetic Resonance Imaging to Estimate Distensibility of the Middle Cerebral Artery
BACKGROUND Although cerebral arterial stiffness may be an important marker for cerebrovascular health, there is not yet a measurement that accurately reflects the distensibility of major intracranial arteries. Herein, we aim to noninvasively measure distension of the human middle cerebral artery (MCA). METHODS Ten healthy volunteers (age: 30.3 ± 10.8 years) underwent ultra-high-field (7-tesla...
متن کاملAssessment of Reproducibility of Geometric Distortion in MRI using Phantom Measurements
Introduction: Image distortion is one of the major problems of magnetic resonance imaging (MRI) for use in 3DMRI, velocity MRI, FMRI and radiotherapy treatment planning (RTTP). It is widely known that the most obvious effect of the inhomogenity of the magnetic fields and the nonlinearity of the gradient is the Geometric Distortion of MR tomograms. In this study, the...
متن کاملInter-study reproducibility of interleaved spiral phase velocity mapping of renal artery haemodynamics
BACKGROUND Qualitative and quantitative assessment of renal blood flow is valuable in the evaluation of patients with renal and renovascular diseases as well as in patients with heart failure. The temporal pattern of renal flow velocity through the cardiac cycle provides important information about renal haemodynamics. High temporal resolution interleaved spiral phase velocity mapping could pot...
متن کامل